References

<< Click to Display Table of Contents >>

Navigation:  »No topics above this level«

References

This list of references provides details of the citations cited within this document. If you require a copy of any paper, please contact us by email or use the contact us facility on the website.

 

Amey, J., Stott, T., Matthews, G. P., Laudone, G. M. & Lindop, J. W. 2008. Porometer 4: Porous Media Analyser: User and Reference Manual, Porvair Filtration Group Ltd.

Bird, N. R. A. & Perrier, E. M. A. 2003. The pore-solid fractal model of soil density scaling. Eur. J. Soil Sci., 54, 467-476.

Blunt, M.J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, 2017.

Borgesen, C. D. & Schaap, M. G. 2005. Point and parameter pedotransfer functions for water retention predictions for Danish soils. Geoderma, 127, 154-167.

Calvo, J. I., Hernandez, A., Pradanos, P., Martinez, L. & Bowen, W. R. 1995. Pore size distributions in microporous membranes. 2. Bulk characterization of track-etched filters by air porometry and mercury porosimetry. J. Colloid Interf. Sci., 176, 467-478.

Dawe, R. A. & Egbogah, E. O. 1978. Oil recovery from petroleum reservoirs. Contemp. Phys., 19, 355-376.

Dexter, A. R. 2004. Soil physical quality: Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma, 120, 227-239.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische mathematik, 1, 269-271

Gane, P. A. C., Kettle, J. P., Matthews, G. P. & Ridgway, C. J. 1996. Void space structure of compressible polymer spheres and consolidated calcium carbonate paper-coating formulations. Ind. Eng. Chem. Res., 35, 1753-1764.

Gregg, S. J. & Sing, K. S. W. 1982. Adsorption, Surface Area and Porosity, London, Academic Press.

Gribble, C. M., Matthews, G. P., Laudone, G. M., Turner, A., Ridgway, C. J., Schoelkopf, J. & Gane, P. A. C. 2011. Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters. Chem. Eng. Sci., 66, 3701-3709.

Hall, D. G. M., Reeve, M. J., Thomasson, A. J. & Wright, V. F. 1977. Water retention, porosity and density of field soils Soil Survey Technical Monograph No. 9.: Rothamsted Experimental Station, Harpenden.

Hillel, D. 1982. Introduction to Soil Physics London, Academic Press

Huang, G. & Zhang, R. 2005. Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma, 127, 52-61.

Jarvis, N. J., Zavattaro, L., Rajkai, K., Reynolds, W. D., Olsen, P. A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B. & Jacques, D. 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108, 1-17.

Jones, K.L., Laudone, G.M., and Matthews, G.P. 2018. A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite.   Carbon, 128, 1-11.

Klocke, N. L. & Hergert, G. W. 1990. How soil holds water [Online]. University of Nebraska-Lincoln. Available: http://digitalcommons.unl.edu/extensionhist/725/ [Accessed 28/02/2012].

Laudone G.M., Gribble C.M., and & Matthews G.P.  2014. Characterisation of the porous structure of Gilsocarbon graphite using pycnometry, cyclic porosimetry and void-network modelling.  Carbon. 73. 61-70. http://dx.doi.org/10.1016/j.carbon.2014.02.037

Laudone G.M., Gribble C.M., Jones K.L., Collier H.J. & Matthews G.P.  2015. Validated a priori calculation of tortuosity in porous materials including sandstone and limestone. Chemical Engineering Science 131, 109-117. http://dx.doi.org/10.1016/j.ces.2015.03.043

Li, D. P., Frey, M. W. & Joo, Y. L. 2006. Characterization of nanofibrous membranes with capillary flow porometry. J. Membrane Sci., 286, 104-114.

Lide, D. R. (ed.) 2004. CRC Handbook of Chemistry and Physics, Florida, USA: CRC Press, Inc.

Ma, Q., Hook, J. E. & Ahuja, L. R. 1999. Influence of three-parameter conversion methods between vanGenuchten and Brooks-Corey function on soil hydraulic properties and water-balance predictions. Water Resour. Res., 35, 2571-2578.

Marshall, T. J., Holmes, J. W. & Rose, C. W. 1996. Soil Physics Cambridge University Press.

Matthews, G.P., Canonville C.F. and Moss A.K..  Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability and NMR relaxation time data for sandstone rocks. Physical Review E, 73, art: 031307 (9 pages) (2006).

Matthews, G.P., Levy, C.L.,  Laudone, G.M., Jones, K.L., Ridgway, C.J., Hallin, I.L. Gazze, S.A.,  Francis, L., Whalley, W.R., Schoelkopf, J.  and Gane, P. A. C. 2018. Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis.  Transport in Porous Media.  124 (2), 631-653. doi: 10.1007%2Fs11242-018-1087-1

Mayer, R. P. & Stowe, R. A. 1965. Mercury Porosimetry - Breakthrough Pressure for Penetration Between Packed Spheres. J. Coll. Sci., 20, 893-911.

Mayr, T. & Jarvis, N. J. 1999. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model. Geoderma, 91, 1-9.

McBratney, A. B., Minasny, B., Cattle, S. R. & Vervoort, R. W. 2002. From pedotransfer functions to soil inference systems. Geoderma, 109, 41-73.

Mourhatch, R., Tsotsis, T. T. & Sahimi, M. 2011. Determination of the true pore size distribution by flow permporometry experiments: An invasion percolation model. J. Membrane Sci., 367, 55-62.

Mualem, Y. 1976. A new model for the predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513-522.

Pachepsky, Y. A. & Rawls, W. J. 2003. Soil structure and pedotransfer functions. Eur. J. Soil Sci., 54, 443-451.

Pachepsky, Y. A., Rawls, W. J. & Lin, H. S. 2006. Hydropedology and pedotransfer functions. Geoderma, 131, 308 - 316.

Perry, R. H. & Green, D. W. (eds.) 1984. Perry's Chemical Engineers' Handbook, London: McGraw-Hill.

Price, J.C., Matthews G.P., Quinlan, K., Sexton J.  and .Matthews A. G de G. 2009. A Depth Filtration Model of Straining within the Void Networks of Stainless Steel Filters. AIChE Journal (American Institute of Chemical Engineers), 55, 3134-3144. doi: 10.1002/aic.11925

Ridgway, C.J., Ridgway, K. & Matthews, G.P. 1997. Journal of Pharmacy and Pharmacology, 49, 377-383.

Rigby, S. P. 2000. A hierarchical structural model for the interpretation of mercury porosimetry and nitrogen sorption. J. Colloid Interf. Sci., 224, 382-396.

Rigby, S. P. & Daut, S. 2002. A statistical model for the heterogeneous structure of porous catalyst pellets. Adv. Colloid Interfac., 98, 87-119.

Rigby, S. P., Fletcher, R. S., Raistrick, J. H. & Riley, S. N. 2002a. Characterisation of porous solids using a synergistic combination of nitrogen sorption, mercury porosimetry, electron microscopy and micro-focus X-ray imaging techniques. Phys. Chem. Chem. Phys., 4, 3467-3481.

Rigby, S. P., Fletcher, R. S. & Riley, S. N. 2002b. Determination of the multiscale percolation properties of porous media using mercury porosimetry. Ind. Eng. Chem. Res., 41, 1205-1226.

Ritter, H. L. & Drake, L. C. 1945. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Industrial & Engineering Chemistry Analytical Edition, 17, 782-786.

Sel, O., Sallard, S., Brezesinski, T., Rathouskì, J., Dunphy, D. R., Collord, A. & Smarsly, B. M. 2007. Periodically Ordered Meso- and Macroporous SiO2 Thin Films and Their Induced Electrochemical Activity as a Function of Pore Hierarchy. Adv. Funct. Mater., 17, 3241-3250.

Tsakiroglou, C. D., Ioannidis, M. A., Amirtharaj, E. & Vizika, O. 2009. A new approach for the characterization of the pore structure of dual porosity rocks. Chem. Eng. Sci., 64, 847-859.

van Brakel, J., Modry, S. & Svata, M. 1981. Mercury Porosimetry: State of the Art. Powder Technol., 29, 1-12.

van Genuchten, M. T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.

Wardlaw, N. C., Li, Y. & Forbes, D. 1987. Pore-Throat Size Correlation from Capillary Pressure Curves. Trans. Por. Med., 2, 597-614.

Washburn, E. W. 1921. The dynamics of fluid flow. Phys. Rev., 17, 273.

Webb, P. A. & Orr, C. 1997. Analytical Methods in Fine Particle Technology, Norcross, GA, Micromeritics.

Yaws, C. L. (ed.) 2001. Matheson gas data book, New York: McGraw-Hill.

Yen, J. Y. 1970. An Algorithm for Finding Shortest Routes from All Source Nodes to a Given Destination in General Networks. Quarterly of Applied Mathematics, 27, 526-530.

Zhu, J. T., Mohanty, B. P., Warrick, A. W. & van Genuchten, M. T. 2004. Correspondence and upscaling of hydraulic functions for steady- state flow in heterogeneous soils. Vadose Zone J., 3, 527-533.